#include <CscDetectorEngineYoloV4.h>
|
| | CscDetectorEngineYoloV4 (ptr< CscDNNPool > dnnPool, map< DetectableObjectClassId, const DetectableObjectClass > detectedObjectClasses, bool drawPredictionOnImage, const string &name) |
| |
| | CscDetectorEngineYoloV4 (ptr< CscDNNPool > dnnPool, map< DetectableObjectClassId, const DetectableObjectClass > detectedObjectClasses, const fs::path modelConfigurationPath, const fs::path modelWeightsPath, bool drawPredictionOnImage, const string &name) |
| |
| ptr< DetectionResult > | detectOnImage (const DetectorSourceImage &image, ptr< DetectionParameters > parameters) override |
| |
| CscDetectorEngineYoloV4 * | setDetectedRectanglesColor (const cv::Scalar &detectedRectanglesColor) |
| |
| CscDetectorEngineYoloV4 * | setTilingEnabled (bool tilingEnabled) |
| |
| CscDetectorEngineYoloV4 * | setMinConfidenceThreshold (float minConfidenceThreshold) |
| |
| CscDetectorEngineYoloV4 * | setCropImage (bool cropImage) |
| |
| virtual bool | equals (CscDetectorEngine *) const override |
| |
| void | drawTarget (cv::Mat &image, float x, float y) |
| |
| virtual | ~CscDetectorEngine ()=default |
| |
|
| | CscDetectorEngine () |
| |
| void | shiftDetectedObjectsForLense (const vector< CscWorldObject * > &resultObjList, const LenseParameter *lense) const |
| |
| void | safeAddRectangle (vector< CscRect2d > &rectangles, CscRect2d &rectangle, cv::Mat &image) |
| |
| static void | drawDetectedObjectBox (cv::Mat &frame, const CscRect2d &boxRectangle, float estimatedDistanceMeter, float certitude, const string &objectName, const Vec3 &color=Vec3(255, 178, 50)) |
| |
◆ CscDetectorEngineYoloV4() [1/2]
Builds a darknet yolov4 detector based on default MS COCO dataset. Note: tiny DNN will be used if GPU is disabled
◆ CscDetectorEngineYoloV4() [2/2]
| conscience_core::detector_engine::CscDetectorEngineYoloV4::CscDetectorEngineYoloV4 |
( |
ptr< CscDNNPool > |
dnnPool, |
|
|
map< DetectableObjectClassId, const DetectableObjectClass > |
detectedObjectClasses, |
|
|
const fs::path |
modelConfigurationPath, |
|
|
const fs::path |
modelWeightsPath, |
|
|
bool |
drawPredictionOnImage, |
|
|
const string & |
name |
|
) |
| |
◆ detectOnImage()
◆ equals()
| bool conscience_core::detector_engine::CscDetectorEngineYoloV4::equals |
( |
CscDetectorEngine * |
other | ) |
const |
|
overridevirtual |
◆ setCropImage()
Darknet can give better result if image is cropped (if not square). Do not mix with tiling, it plays on the same field
◆ setDetectedRectanglesColor()
| CscDetectorEngineYoloV4* conscience_core::detector_engine::CscDetectorEngineYoloV4::setDetectedRectanglesColor |
( |
const cv::Scalar & |
detectedRectanglesColor | ) |
|
|
inline |
◆ setMinConfidenceThreshold()
| CscDetectorEngineYoloV4* conscience_core::detector_engine::CscDetectorEngineYoloV4::setMinConfidenceThreshold |
( |
float |
minConfidenceThreshold | ) |
|
|
inline |
◆ setTilingEnabled()
| CscDetectorEngineYoloV4* conscience_core::detector_engine::CscDetectorEngineYoloV4::setTilingEnabled |
( |
bool |
tilingEnabled | ) |
|
|
inline |
Darknet seems more efficient on tiled images, with tiles of same proportions than input DNN size false by default
The documentation for this class was generated from the following files: