Conscience Core
Public Member Functions | List of all members
conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters Struct Reference

Structure representing the hyperparameters for model training. More...

#include <CscNeuralNetwork.h>

Public Member Functions

 TrainingHyperparameters (CscInitializationWeightsStrategy initWeightStrategyInit, CscInitializationBiasStrategy initBiasStrategyInit, CscLossFunction lossFunctionInit, CscOptimizer optimizers, float learningRateInit, int nbDataPerMiniBatchInit, bool earlyStoppingInit, int patienceInit)
 
void setInitializationWeightsStrategy (CscInitializationWeightsStrategy initWeightStrategyUpdate)
 
void setInitializationBiasStrategy (CscInitializationBiasStrategy initBiasStrategyUpdate)
 
void setLossFunction (CscLossFunction lossFunctionUpdate)
 
void setOptimizer (CscOptimizer optimizerUpdate)
 
void setLearningRate (float learningRateUpdate)
 
void setRho (float rho)
 
void setBeta1 (float beta1Update)
 
void setBeta2 (float beta2Update)
 
void setEpsilon (float epsilonUpdate)
 
void setNbDataPerMiniBatch (int nbDataPerMiniBatchUpdate)
 
void setEarlyStoppingActivation (bool earlyStoppingUpdate)
 
void setPatience (int patienceUpdate)
 
const CscInitializationWeightsStrategy getInitializationWeightsStrategy () const
 
const CscInitializationBiasStrategy getInitializationBiasStrategy () const
 
const CscLossFunction getLossFunction () const
 
const CscOptimizer getOptimizer () const
 
const float getLearningRate () const
 
const float getRho () const
 
const float getBeta1 () const
 
const float getBeta2 () const
 
const float getEpsilon () const
 
const int getNbDataPerMiniBatch () const
 
const bool getEarlyStoppingActivation () const
 
const int getPatience () const
 
TrainingHyperparametersgetDuplicata ()
 

Detailed Description

Structure representing the hyperparameters for model training.

This structure contains various hyperparameters used for training a model, including strategies for initializing weights and biases, the loss function, the optimizer, and several optimization parameters.

Constructor & Destructor Documentation

◆ TrainingHyperparameters()

conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::TrainingHyperparameters ( CscInitializationWeightsStrategy  initWeightStrategyInit,
CscInitializationBiasStrategy  initBiasStrategyInit,
CscLossFunction  lossFunctionInit,
CscOptimizer  optimizers,
float  learningRateInit,
int  nbDataPerMiniBatchInit,
bool  earlyStoppingInit,
int  patienceInit 
)

Member Function Documentation

◆ getBeta1()

const float conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getBeta1 ( ) const

◆ getBeta2()

const float conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getBeta2 ( ) const

◆ getDuplicata()

CscNeuralNetwork::TrainingHyperparameters * conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getDuplicata ( )

◆ getEarlyStoppingActivation()

const bool conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getEarlyStoppingActivation ( ) const

◆ getEpsilon()

const float conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getEpsilon ( ) const

◆ getInitializationBiasStrategy()

const CscInitializationBiasStrategy conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getInitializationBiasStrategy ( ) const

◆ getInitializationWeightsStrategy()

const CscInitializationWeightsStrategy conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getInitializationWeightsStrategy ( ) const

◆ getLearningRate()

const float conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getLearningRate ( ) const

◆ getLossFunction()

const CscLossFunction conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getLossFunction ( ) const

◆ getNbDataPerMiniBatch()

const int conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getNbDataPerMiniBatch ( ) const

◆ getOptimizer()

const CscOptimizer conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getOptimizer ( ) const

◆ getPatience()

const int conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getPatience ( ) const

◆ getRho()

const float conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::getRho ( ) const

◆ setBeta1()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setBeta1 ( float  beta1Update)

◆ setBeta2()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setBeta2 ( float  beta2Update)

◆ setEarlyStoppingActivation()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setEarlyStoppingActivation ( bool  earlyStoppingUpdate)

◆ setEpsilon()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setEpsilon ( float  epsilonUpdate)

◆ setInitializationBiasStrategy()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setInitializationBiasStrategy ( CscInitializationBiasStrategy  initBiasStrategyUpdate)

◆ setInitializationWeightsStrategy()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setInitializationWeightsStrategy ( CscInitializationWeightsStrategy  initWeightStrategyUpdate)

◆ setLearningRate()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setLearningRate ( float  learningRateUpdate)

◆ setLossFunction()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setLossFunction ( CscLossFunction  lossFunctionUpdate)

◆ setNbDataPerMiniBatch()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setNbDataPerMiniBatch ( int  nbDataPerMiniBatchUpdate)

◆ setOptimizer()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setOptimizer ( CscOptimizer  optimizerUpdate)

◆ setPatience()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setPatience ( int  patienceUpdate)

◆ setRho()

void conscience_core::ai::nn::CscNeuralNetwork::TrainingHyperparameters::setRho ( float  rho)

The documentation for this struct was generated from the following files: